Certifying Airport Security Regulations
using the Focal Environment

David Delahaye, Jean-Frédéric Etienne,
and Véronique Viguié Donzeau-Gouge

CEDRIC/CNAM, Paris, France,
David.Delahaye@cnam.fr, etien_jeQauditeur.cnam.fr,
donzeau@cnam.fr

Abstract. We present the formalization of regulations intended to en-
sure airport security in the framework of civil aviation. In particular, we
describe the formal models of two standards, one at the international
level and the other at the European level. These models are expressed
using the Focal environment, which is also briefly presented. Focal is an
object-oriented specification and proof system, where we can write pro-
grams together with properties which can be proved semi-automatically.
We show how Focal is appropriate for building a clean hierarchical specifi-
cation for our case study using, in particular, the object-oriented features
to refine the international level into the European level and parameteri-
zation to modularize the development.

1 Introduction

The security of civil aviation is governed by a series of international standards
and recommended practices that detail the responsibilities of the various stake-
holders (states, operators, agents, etc). These documents are intended to give
the specifications of procedures and artifacts which implement security in air-
ports, aircraft and air traffic control. A key element to enforce security is the
conformance of these procedures and artifacts to the specifications. However, it
is also essential to ensure the consistency and completeness of the specifications.
Standards and recommended practices are natural language documents (gener-
ally written in English) and their size may range from a few dozen to several
hundred pages. Natural language has the advantage of being easily understood
by a large number of stake-holders, but practice has also shown that it can be
interpreted in several inconsistent ways by various readers. Moreover, it is very
difficult to process natural language documents automatically in the search for
inconsistencies. When a document has several hundred pages, it is very difficult
to ensure that the content of a particular paragraph is not contradicted by some
others which may be several dozen pages from the first one.

This paper aims to present the formal models of two standards related to air-
port security in order to study their consistency: the first one is the international
standard Annex 17 [7] (to the Doc 7300/8) produced by the International Civil
Aviation Organization (ICAQO), an agency of the United Nations; the second one

is the European standard Doc 2320 [2] (a public version of the Doc 30, which has
a restricted access status) produced by the European Civil Aviation Conference
(ECAC) and which is supposed to refine the first one at the European level. More
precisely, from these models, we can expect:

1. to detect anomalies such as inconsistencies, incompleteness and redundancies
or to provide evidence of their absence;

2. to clarify ambiguities and misunderstandings resulting from the use of infor-
mal definitions expressed in natural language;

3. to identify hidden assumptions, which may lead to shortcomings when addi-
tional explanations are required (e.g. in airport security programmes);

4. to make possible the rigorous assessment of satisfaction for a concrete regu-
lation implementation and w.r.t. the requirements.

This formalization was completed in the framework of the EDEMOI' [§]
project, which aims to integrate and apply several requirements engineering and
formal methods techniques to analyze regulation standards in the domain of air-
port security. The methodology of this project may be considered as original in
the sense that it tries to apply techniques, usually reserved to critical software, to
the domain of regulations (in which no implementation is expected). The project
used a two-step approach. In the first step, standards described in natural lan-
guage were analyzed in order to extract security properties and to elaborate a
conceptual model of the underlying system [5]. The second step, which this work
is part of, consists in building a formal model and to analyze/verify the model
by different kinds of formal tools. In this paper, we describe two formal models
of the two standards considered above, which have been carried out using the
Focal [12] environment, as well as some results that have been analyzed from
these models.

Another motivation of this paper is to present the Focal [12] (previously Foc)
environment, developed by the Focal team, and to show how this tool is appro-
priate to model this kind of application. The idea is to assess and validate the
design features as well as the reasoning support mechanism offered by the Focal
specification and proof system. In our case study, amongst others, we essentially
use the features of inheritance and parameterization. Inheritance allows us to
get a neat notion of refinement making incremental specifications possible; in
particular, the refinement of the international level by the European level can be
expressed naturally. Parameterization provides us with a form of polymorphism
so that we can factorize parts of our development and obtain a very modular
specification. Finally, regarding the reasoning support, the first-order automated
theorem-prover of Focal, called Zenon, bring us an effective help by automatically
discharging most of the proofs required by the specification.

The paper is organized as follows: first, we give a brief description of the
Focal language with its main structures and features; next, we present our case
study, i.e. the several standards regulating security in airports and in particular,

! The EDEMOI project is supported by the French National "Action Concertée Inci-
tative Sécurité Informatique".

those we chose to model; finally, we describe the global formalization made in
Focal, as well as the properties that could be analyzed and verified.

2 The Focal environment

2.1 What is Focal?

Focal [12], initiated by T. Hardin with R. Rioboo and S. Boulmé, is a language in
which it is possible to build applications step by step, going from abstract spec-
ifications, called species, to concrete implementations, called collections. These
different structures are combined using inheritance and parameterization, in-
spired by object-oriented programming; moreover, each of these structures is
equipped with a carrier set, providing a typical algebraic specification flavor.
Moreover, in this language, there is a neat separation between the activities of
programming and proving. A compiler was developed by V. Prevosto for this
language, able to produce Ocaml [11] code for execution, Coq [10] code? for cer-
tification, but also code for documentation (generated by means of structured
comments). More recently, D. Doligez provided a first-order automated theorem
prover, called Zenon, which helps the user to complete his/her proofs in Focal
through a declarative-like proof language. This automated theorem prover can
produce pure Coq proofs, which are reinserted in the Coq specifications generated
by the Focal compiler and fully verified by Cog.

2.2 Specification: species

The first major notion of the Focal language is the structure of species, which
corresponds to the highest level of abstraction in a specification. A species can
be roughly seen as a list of attributes and there are three kinds of attributes:

— the carrier type, called representation, which is the type of the entities that
are manipulated by the functions of the species; representations can be either
abstract or concrete;

— the functions, which denote the operations allowed on the entities; the func-
tions can be either definitions (when a body is provided) or declarations
(when only a type is given);

— the properties, which must be verified by any further implementation of
the species; the properties can be either simply properties (when only the
proposition is given) or theorems (when a proof is also provided).

More concretely, the general syntax of a species is the following;:

2 Here, Coq is only used as a proof checker, and not to extract, from provided proofs
and using its Curry-Howard isomorphism capability, Ocaml programs, which are
directly generated from Focal specifications.

species <name> =

rep [= <type>]; (* abstract/concrete
representation *)

sig <name> in <type>; (* declaration *)
let <name> = <body>; (* definition *)

property <name> : <prop>; (* property *)
theorem <name> : <prop> (* theorem *)
proof : <proof>;

end

where <name> is simply a given name, <type> a type expression (mainly
typing of core-ML without polymorphism but with inductive types), <body> a
function body (mainly core-ML with conditional, pattern-matching and recur-
sion), <prop> a (first-order) proposition and <proof> a proof (expressed in a
declarative style and given to Zenon). In the type language, the specific expres-
sion self refers to the type of the representation and may be used everywhere
except when defining a concrete representation.

As said previously, species can be combined using (multiple) inheritance,
which works as expected. It is possible to define functions that were previously
only declared or to prove properties which had no provided proof. It is also
possible to redefine functions previously defined or to reprove properties already
proved. However, the representation cannot be redefined and functions as well
as properties must keep their respective types and propositions all along the
inheritance path. Another way of combining species is to use parameterization.
Species can be parameterized either by other species or by entities from species.
If the parameter is a species, the parameterized species only has access to the
interface of this species, i.e. only its abstract representation, its declarations and
its properties. These two features complete the previous syntax definition as
follows:

species <name> (<name> is <name>, <name>> in <name>, ...)
inherits <name>, <name> (<pars>), ... = ...
end

where <pars> is a list of <name> and denotes the names which are used as
parameters. When the parameter is a species, the keyword is is, when it is an
entity of a species, the keyword is in.

To better understand this notion of species, let us give a small example:

Ezample 1 (Finite stacks). To formalize finite stacks, an abstract way is to spec-
ify stacks (possibly infinite) first, and to refine them as finite stacks afterwards.
The specification of stacks might be the following:

species stack (typ is setoid) inherits setoid =

sig empty in self;

sig push in typ —> self —> self;
sig pop in self —> self;

sig last in self —> typ;

let is_empty (s) = lequal (s, lempty);

property ie_empty : lis_empty (!empty);
property ie_push : all e in typ, all s in self,
not (lis_empty (!push (e, s))); ...

end

where setoid is a predefined species representing a non-empty set with an
equality (in the first line, the parameter and the inheritance from setoid show
respectively that we want to be able to compare two items of a stack, but also two
stacks), the "!" notation is equivalent to the common dot notation of message
sending in object-oriented programming (self is the default species when there
is no receiver species indicated; e.g. lempty is for selflempty).

Next, before specifying finite stacks, we can be more modular and formalize
the notion of finiteness separately as follows:

species is_finite (max in int) inherits basic_object =

sig size in self —> int;
property size_max : all s in self, #int_leq (Isize (s), max);

end

where basic_object is a predefined species supposed to be the root of every
Focal hierarchy, int the predefined type of integers and "#int_" the prefix of op-
erations over the type int. Here, we can remark that the species is parameterized
by an entity of a species and not by a species.

Finally, we can formalize finite stacks using a multiple inheritance from the
species stack and is_finite:

species finite_stack (typ is setoid, max in int)
inherits stack (typ), is_finite (max) =

let is_full (s) = #int_eq (Isize (s), max);

property size_empty : #int_eq (!size (lempty), 0);

property size_push : all e in typ, all s in self, not (lis_full (s)) —>
#int_eq (Isize (!push (e, s)), #int_plus (Isize (s), 1)); ...

end

2.3 Implementation: collection

The other main notion of the Focal language is the structure of collection, which
corresponds to the implementation of a specification. A collection implements a
species in such a way that every attribute becomes concrete: the representation
must be concrete, functions must be defined and properties must be proved. If
the implemented species is parameterized, the collection must also provide imple-
mentations for these parameters: either a collection if the parameter is a species
or a given entity if the parameter denotes an entity of a species. Moreover, a
collection is seen (by the other species and collections) through its correspond-
ing interface; in particular, the representation is an abstract data type and only
the definitions of the collection are able to manipulate the entities of this type.
Finally, a collection is a terminal item and cannot be extended or refined by
inheritance. The syntax of a collection is the following:

collection <name> implements <name> (<pars>) = ... end

We will not detail examples of collections here since our formalization (see
Section 4) does not make use of them. Actually, the airport security regulations
considered in this paper are rather abstract and do not expect any implementa-
tion. Regarding our previous example of finite stacks, a corresponding collection
will have to provide a concrete representation (using lists for example), defini-
tions for only declared functions (empty, push, pop, last) and proofs for prop-
erties (ie_empty, ie_push, etc). For complete examples of collections, the reader
can refer to the standard library of Focal (see Section 2.5).

2.4 Certification: proving with Zenon

The certification of a Focal specification is ensured by the possibility of proving
properties. To do so, a first-order automated theorem prover, called Zenon and
based on the tableau method, helps us to complete the proofs. Basically, there
are two ways of providing proofs to Zenon: the first one is to give all the prop-
erties (proved or not) and definitions needed by Zenon to build a proof with its
procedure; the second one is to give additional auxiliary lemmas to help Zenon
to find a proof. In the first option, Zenon must be strong enough to find a proof
with only the provided properties and definitions; the second option must be
considered when Zenon needs to be helped a little more or when the user likes
to present his/her proof in a more readable form. In the first option, proofs are
described as follows:

theorem <name> : <prop>
proof : by <props> def <defs>;

where <props> is a list of properties and <defs> a list of definitions.

The proof language of the second option is inspired by a proposition by
L. Lamport [6], which is based on a practical and hierarchical structuring of
proofs using number labels for proof depth. We do not describe this language

here but some examples of use can be found in the formalization of our case
study (see Section 4.4 to get the development).
Let us describe a small proof in our example of finite stacks:

Ezample 2 (Finite stacks). In the species stack, we can notice that with the
definition of is_empty, Property ie_empty can already be proved in the following
way:

theorem ie_empty : lis_empty (!empty)
proof : by lequal_reflexive def lis_empty;

where equal_reflexive is the property of reflexivity for equality, which is in-
herited from the species setoid.

This proof uses the definition of is_empty, which means that any redefinition
of is_empty in any further inheritance invalidates this proof (which has to be
completed again using the new definition). Thus, w.r.t. usual object-oriented
programming, redefinitions may have some additional effects since they directly
influence the proofs in which they are involved.

2.5 Further information

For additional information regarding Focal, the reader can refer to [3], as well
as to the Focal Web site: http://focal.inria.fr/, which contains the Focal
distribution (compiler, Zenon and other tools), the reference manual, a tutorial,
some FAQs and also some other references regarding, in particular, Focal’s formal
semantics (e.g. see S. Boulmé and S. Fechter’s PhD theses).

3 Case study: airport security regulations

The primary goal of the international standards and recommended practices
regulating airport security is to safeguard civil aviation against acts of unlawful
interference. These normative documents detail the roles and responsibilities of
the various stake-holders and pinpoint a set of security measures (as well as the
ways and means to implement them) that each airport serving civil aviation
has to comply with. In addition, the entire regulatory system is organized in a
hierarchical way, where each level has its own set of regulatory documents that
are drafted and maintained by different bodies. At the international level, An-
nex 17 [7] of the International Civil Aviation Organization (ICAO) lays down the
general principles and recommended practices to be adopted by each member
state. It is refined at the European level by the Doc 2320 [2] of the European
Civil Aviation Conference (ECAC), where the standard is made more detailed
and more precise. At the national level, each member state has to establish and
implement a national civil aviation security programme in compliance with inter-
national standards and national laws. Finally, at the airport level, the national
and international standards are implemented by an airport security programme.

All these documents are written in natural language and due to their volumi-
nous size, it is difficult to manually assess the consistency of the entire regulatory
system. Moreover, informal definitions tend to be inaccurate and may be inter-
preted in various inconsistent ways by different readers. Consequently, it may
happen that two inspectors visiting the same airport at the same time reach
contradictory conclusions about its conformity. However, these documents have
the merit of being rigorously structured. Ensuring their consistency and com-
pleteness while eliminating any ambiguity or misunderstanding is a significant
step towards the reinforcement of airport security.

3.1 Scope delimitation

After a deep study of the above-mentioned documents and several consultations
with the ICAO and ECAC, we decided to take as a starting point the preventive
security measures described in Chapter 4 of Annex 17. Chapter 4 begins by
stating the primary goal to be fulfilled by each member state, which is:

4.1 Each Contracting State shall establish measures to prevent weapons,
explosives or any other dangerous devices, articles or substances, which
may be used to commit an act of unlawful interference, the carriage or
bearing of which is not authorized, from being introduced, by any means
whatsoever, on board an aircraft engaged in international civil aviation.

Basically, this means that acts of unlawful interference can be avoided by
preventing unauthorized dangerous objects from being introduced on board air-
craft3. To be able to achieve this goal, the member states have to implement a set
of preventive security measures, which are classified in Chapter 4 according to
six specific situations that may potentially lead to the introduction of dangerous
objects on board. These are namely:

— persons accessing restricted security areas and airside areas (A17, 4.2);

— taxiing and parked aircraft (A17, 4.3);

— ordinary passengers and their cabin baggage (A17, 4.4);

— hold baggage checked-in or taken in custody of airline operators (A17, 4.5);

— cargo, mail, etc, intended for carriage on commercial flights (A17, 4.6);

— special categories of passengers like armed personnel or potentially disruptive
passengers that have to travel on commercial flights (A17, 4.7).

At the lower levels of the regulatory hierarchy, the security measures are
refined and detailed in such a way as to preserve the decomposition presented
above. This structure allowed us to easily identify the relation between the dif-
ferent levels of refinement. Due to the restricted access nature of some of the
regulatory documents, the formalization presented in Section 4 only considers
Chapter 4 of Annex 17 and some of the refinements proposed by the European
Doc 2320. Moreover, for simplification reasons, we do not cover the security
measures 4.3 and 4.6.

3 Note that the interpretation given to the quoted paragraph may appear wrong to

some readers. In fact, Paragraph 4.1 is ambiguous as it can be interpreted in two
different ways (see Section 4.4 for more details).

3.2 Modeling challenges

Modeling the regulations governing airport security is a real world problem and
is therefore a good exercise to identify the limits of the inherent features of the
Focal environment. Moreover, the ultimate objective of such an application is
not to produce certified code but rather to provide an automated support for
the analysis of the regulatory documents. For this case study, the formalization
needs to address the following modeling challenges:

1. the model has to impose a structure that facilitates the traceability and
maintainability of the normative documents. Moreover, through this struc-
ture, it should be possible to easily identify the impact of a particular security
measure on the entire regulatory system;

2. the model must make the distinction between the security measures and
the ways and means of implementing them. Most of the security measures
are fairly general and correspond to reachable objectives. However, their
implementation may differ from one airport to another due to national laws
and local specificities;

3. for each level of the regulatory hierarchy, the model must determine (through
the use of automated reasoning support tools) whether or not the funda-
mental security properties can be derived from the set of prescribed security
measures. This will help to identity hidden assumptions made during the
drafting process. In addition, the model has to provide evidence that the
security measures defined at refined levels are not less restrictive than those
at higher levels.

4 Formalization

4.1 Model domain

In order to formalize the meaning of the preventive security measures properly,
we first need to identity the subjects they regulate, together with their respective
properties/attributes and the relationships between them. It is also essential to
determine the hierarchical organization of the identified subjects in order to
effectively factorize functions and properties during the formalization process.
This is done by determining the dependencies between the security measures,
w.r.t. the definitions of terms used in the corresponding normative document. For
example, let us consider the following security measure described in Chapter 4
of Annex 17:

4.4.1 Each Contracting State shall establish measures to ensure that orig-
inating passengers of commercial air transport operations and their cabin
baggage are screened prior to boarding an aircraft departing from a secu-
rity restricted area.

To be able to formalize this security measure, it is obvious that we will have to
define the subjects originating passenger, cabin baggage, aircraft and security re-
stricted area, together with the relations between them. Moreover, we will need to
define appropriate attributes for the originating passenger subject to characterize
the state of being screened and of being on board. Finally, to complete the formal-
ization, we will have to specify the integrity constraints induced by the regulation
(e.g. screened passengers are either in security restricted areas or on board air-
craft). The hierarchies of subjects obtained after analyzing all the preventive se-
curity measures of Annex 17 are represented by a Focal model, where each subject
is a species. For instance, the Focal model for airside persons is given in Figure 1
(where nodes are species
and arrows inheritance re-
lations s.t. A « B means
species B inherits from A).

For possible extensions
during the refinement pro-
cess, the representation of
the species is left unde-
fined (abstract) and their
functions are only declared.
Moreover, since we are not
concerned with code gen-
eration, our formalization
does not make use of collec-
tions. For example, the fol-
lowing species corresponds to the specification of the cabin person subject:

obligedPassenger

Fig. 1. Hierarchy for airside persons in Annex 17.

species cabinPerson (obj is object, obj_set is basic_set (obj),
do is dangerousObject, do_set is basic_set (do),
wp is weapon, wp_set is basic_set (wp), id is identity,
c-luggage is cabinLuggage (obj, obj_set, do, do_set, wp, wp-set),
cl_set is basic_lset (obj, obj_set, do, do_set, wp, wp_set, c_luggage))
inherits airsidePerson (obj, obj-set, do, do_set, wp, wp_set, id) =

sig embarked in self —> bool;
sig get_cabinLuggage in self —> cl_set;

property invariant_weapons : all w in wp, all s in self,
wp-_set!member (w, lget_weapons (s)) —> not (wplinaccessible (w));

end

The species cabinPerson specifies the common functions and properties for
the different types of persons who are eligible to travel on board an aircraft. In
order to specify the relations between cabin persons and the different items they
can have access to during flight time, the species cabinPerson is parameterized
with the species object, dangerousObject, weapon and cabinLuggage. The pa-
rameters obj_set, do_set, wp_set and cl_set describe the sets of the previously

identified items; they are introduced to express the fact that a cabin person can
own more than one item at a time. Since most of these relations are already spec-
ified in the species airsidePerson, they are inherited automatically. The function
get_cabinLuggage is only introduced to make accessible the set of cabin luggage
associated to a given instance of cabinPerson. Property invariant_weapons is a
typical example of integrity constraints imposed by the regulation. It states that
when weapons are carried by cabin persons, they are by default considered to be
accessible during flight time.

4.2 Annex 17: preventive security measures

As said in Section 3.2, the formal model needs to impose a certain structure that
will facilitate the traceability and maintainability of the normative documents.
To achieve this purpose, our model follows the structural decomposition pro-
posed in Chapter 4 of Annex 17 (using inheritance), while taking into account
the dependencies between the preventive security measures. In our model, since
most of the security measures correspond to reachable objectives, they are de-
fined as invariants and each airport security programme must provide procedures
which satisfy these invariants. However, when the security measures describe ac-
tions to be taken when safety properties are violated, a procedural approach is
adopted. The consistency and completeness of the regulation are achieved by
establishing that the fundamental security property, defined in Paragraph 4.1 of
Annex 17, is satisfied by all the security measures, while ensuring their homo-
geneity. The general structure of the Annex 17 model is represented in Figure 2.
The species airsidePersons,
ordinaryPassengers, spe-
cialPassengers and baggage
introduce the set domain
of the subjects presented
in Section 4.1 as well as
their relational constraints
(e.g. two passengers can-
‘ not have the same lug-

gage). The preventive se-
curity measures are for-

malized in species al7prop-

ertyd_2, alT7property4_4,
Fig. 2. Structure of Annex 17.

al7property4 1

al7property4 5

al7property4 4 al7property4 7

alT7property4d_5, al7prop-
ertyd_7 and their depen-
dencies are defined according to the hierarchical organization of the subjects they
regulate. The fundamental security property is defined in species al7property4_1.
It is at this level that the set of on board objects is defined. Finally, the theorems
establishing the consistency and completeness of the regulation are defined in
the species annex17.

Security measures related to ordinary passengers As an example, we
can focus on Property 4.4 of Annex 17 related to security measures for ordinary
passengers. This property is divided into four sub-properties and, for example,
we can describe how Property 4.4.1 (cited in Section 4.1) was formalized:

Ezample 8 (Property 4.4.1). Security measure 4.4.1 states that originating pas-
sengers and their cabin baggage should be screened prior to boarding an aircraft.
In species al7property4_4, this statement is formalized as follows:

property property_4_4_1 : all p in op, all s in self,
op-setlmember (p, loriginatingPassengers (s)) —>
oplembarked (p) —> oplscreened (p);

where p represents an originating passenger and s the current state of species
al7property4_4. It should be noted that the scope of the boolean function
screened extends to cabin baggage as well, since cabin baggage remains with
its owners throughout the boarding process. The fact of being a screened ordi-
nary passenger is defined in the species controlledPassengers (see Figure 1) as
follows:

property invariant_screened : all s in self,
Iscreened (s) —> wp_setlis_empty (!get_-weapons (s)) and
wp-_set!lis_empty (cl_set!get_weapons (lget_cabinLuggage (s))) and
all o in do, do_set!member (o, !get_dangerousObjects (s)) or
do_set!member (o, cl_set!get_dangerousObjects
('get_cabinLuggage (s))) —> dolis_authorized (o);

where s represents a controlledPassenger. Property invariant_screened states
that if a passenger is screened, he/she does not have any weapons and if the
passenger does have a dangerous object (other than weapons), it is authorized.
A similar property also exists for Property 4.4.2 (which concerns transfer pas-
sengers) and could be factorized via the parameterization mechanism of Focal.

From this property and the three others (4.4.2, 4.4.3 and 4.4.4), we can prove
the global property 4.4 that ordinary passengers admitted on board an aircraft do
not have any unauthorized dangerous objects. This intermediate lemma is used
afterwards when proving the consistency of the fundamental security property
(4.1) w.r.t. the preventive security measures.

Consistency of Annex 17 Once we completed the formalization for each of
the different categories of preventive security measures and derived the appro-
priate intermediate lemmas, we can consider Paragraph 4.1 (see Section 3.1) of
Annex 17. Tt is formalized as follows in species al7property4_1:

property property_4_1 : all a in ac, all s in self,
ac_set!member (a, !departureAircraft (s)) —>
(all o in do, do_set!member (o, lonboardDangerousObjects (a, s)) —>
dolis_authorized (o)) and
(all 0 in wp, wp_set!member (o, lonboardWeapons (a, s)) —>
wplis_authorized (0));

where a represents an aircraft. This states that dangerous objects are admit-
ted on board a departing aircraft only if they are authorized. In addition, the set
of on board objects for each departing aircraft is defined according to the differ-
ent types of cabin persons (together with their cabin luggage) and according to
the different types of hold baggage loaded into the aircraft. This correlation is
necessary since it will allow us to establish the following consistency theorem:

theorem consistency : !property_4_2 —> lproperty_4.4 —>
lproperty_4_5 —> lproperty_4_7 —> lproperty_4_1

proof : by do_setlunionl, wp_setlunionl def !property_4_2, !property_4_4,
lproperty_4_5, !property_4_7, !property_4_1;

where property_4_2, property_4_4, property_4_5 and property_4_7 corre-
spond to the intermediate lemmas defined for each category of preventive se-
curity measures. The purpose of Theorem consistency is to verify whether the
fundamental security property can be derived from the set of preventive security
measures. This allowed us to identify some hidden assumptions done during the
drafting process (see Section 4.4). However, this theorem does not guarantee the
absence of contradictions in the regulation. A way to tackle this problem is to
try to derive False from the set of security properties and to let Zenon work on
it for a while. If the proof succeeds then we have a contradiction, otherwise we
can only have a certain level of confidence.

4.3 Doc 2320: some refinements

The document structure of Doc 2320 follows the decomposition presented in
Chapter 4 of Annex 17. Refinement in Doc 2320 appears at two levels. At the
subject level, the refinement consists in enriching the characteristics of the ex-
isting subjects or in adding new subjects. At the security property level, the
security measures become more precise and sometimes more restrictive. The
verification of the consistency and completeness of Doc 2320 is performed in
the same way as for Annex 17 (see the modeling described in Section 4.2).

However, since Doc 2320

refines Annex 17, an ad-
S ditional verification is re-

- E - quired to show that the se-
- . curity measures that it de-

\ al7property4 1 . . .
>= I scribes do not invalidate

oemuas s the omes defined in An-
~7-7 " nex 17. Thus, in addition to
consistency proofs, another

kind of proofs appears, that

¢ Codnarypasengers > < peoiapasengers are refinement proofs. The
B 1 ﬂ;/ T model structure obtained
_arsdeperons.) for Doc 2320 is described
) in Figure 3 (where the ex-
isting species coming from

> -~ -t
(_al7property4 2) { baggage)

Fig. 3. Structure of Doc 2320.

Annex 17 are distinguished with dashed nodes). As can be seen, the refinement
is performed in such a way as to preserve the dependencies between the secu-
rity measures. Moreover, it can be observed that unlike species al7property4_2,
al7property4d_4 and alT7property4_5, species al7property4d_7 does not have a
Doc 2320 counterpart. This is because, in Doc 2320, no mention to special cat-
egories of passengers is made. We assume that in this case, the international
standard still prevails.

A refinement example In Doc 2320, Property 4.4.1 of Annex 17 is refined by
Property 4.1.1, which states that originating passengers are either searched by
hand or screened prior to boarding an aircraft. In species d2320property4, this
statement is formulated as follows:

property d2320property_4_1_1 : all p in op, all s in self,
op-set!member (p, loriginatingPassengers (s)) —>
oplembarked (p) —> op!screened (p) or oplhandSearched (p);

To prove that Property d2320property_4_1_1 does not invalidate Property
property_4_4_1, the following theorem is used:

theorem refinement : 1d2320property_4_-1_1 —> lproperty_4_4_1
proof : by oplinvariant_handSearched, oplinvariant_screened
def !d2320property_4_1_1, lproperty_4_4_1;

The above theorem is provable since in species controlledPassenger2320,
which is a refined version of species controlledPassenger, the boolean function
handSearched is characterized by the same properties than the boolean function
screened (e.g. Property invariant_screened).

4.4 Analyses and results

An example of ambiguity As seen in Section 3, Paragraph 4.1 of Annex 17 is
very important as it states the primary goal of the preventive security measures
to be implemented by each member state. However, it appears to be ambiguous
since it can be interpreted in two different ways: either dangerous objects are
never authorized on board or they are admitted on board only if they are au-
thorized. According to the ICAQ, the second interpretation is the correct one as
Paragraph 4.1 needs to be considered in the general context of the regulation to
clarify this ambiguity.

Hidden assumptions In trying to demonstrate that Paragraph 4.1 of Annex 17
is consistent w.r.t. the set of preventive security measures, we discovered, for
instance, the following hidden assumptions:

1. since disruptive passengers who are obliged to travel are generally escorted
by law enforcement officers, they are considered not to have any dangerous
objects in their possession;

2. unlike other passengers, transit passengers are not subjected to any specific
security control but should be protected from unauthorized interference at
transit spots. This implies that they are considered to be secure and hence
do not have any unauthorized dangerous objects.

Development The entire formalization takes about 10000 lines of Focal code,
with in particular, 150 species and 200 proofs. It took about 2 years to be
completed. The development is freely available (sending a mail to the authors)
and can be compiled with the latest version of Focal (0.3.1).

5 Conclusion

Summary A way to improve security is to produce high quality standards. The
formal models of Annex 17 and Doc 2320 regulations, partially described in this
paper, tend to bring an effective solution in the specific framework of airport
security. From these formalizations, some properties could be analyzed and in
particular, the notion of consistency. This paper also aims to emphasize the use
of the Focal language, which provides a strongly typed and object-oriented for-
mal development environment. The notions of inheritance and parameterization
allowed us to build the specifications in an incremental and modular way. More-
over, the Zenon automated theorem prover (provided in Focal) discharged most
of the proof obligations automatically and appeared to be very appropriate when
dealing with abstract specifications (i.e. with no concrete representation).

Related work Currently, models of the same regulations, by D. Bert and
his team, are under development using B [1] in the framework of the EDE-
MOI project. In the near future, it could be interesting to compare the two
formal models (in Focal and B) rigorously in order to understand if and how the
specification language influences the model itself. It should be noted that the
same results (see Section 4.4) were obtained from this alternative formalization,
since some of these results were already analyzed before the formalization itself
(during the conception step). Very close to the EDEMOI project is the SAFEE
project [9], funded by the 6th Framework Programme of the European Union
(FP6) and which aims to use similar techniques for security but on board the
aircraft. Regarding similar specifications in Focal, we must keep in mind that the
compiler is rather recent (4/5 years at most) and efforts have been essentially
provided, by R. Rioboo, to build a Computer Algebra library, which is currently
the standard library of Focal. However, some more applicative formalizations
are under development like certified implementations of security policies [4] by
M. Jaume and C. Morisset.

Future work We plan to integrate a test suite into this formalization using an
automatic generation procedure (working from a Focal specification) and using
stubs for abstract functions (i.e. only declared). Amongst other things, this will

allow us to imagine and build attack scenarios which, at least in this context,
appear to be quite interesting for official certification authorities. Such an auto-
matic procedure is currently work in progress, by C. Dubois and M. Carlier, but
is still limited (to universally quantified propositions) and needs to be extended
to be applied to our development. We also plan to produce UML documents
automatically generated from the Focal specifications and which is an effective
solution to interact with competent organizations (ICAO, ECAC). Such a tool
has been developed by J. F. Etienne but has to be completed to deal with all
the features of Focal. Regarding the Focal language itself, some future evolutions
might be appropriate, in particular, the notion of subtyping (there is a notion
of subspecies but it does not correspond to a relation of subtyping), but which
still needs to be specified in the case of properties. Also, it might be necessary
to integrate temporal features in order to model behavioral properties, since in
fact, our formalization, described in this paper, just shows a static view of the
specified regulations.

References

1. J. R. Abrial. The B Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK), 1996. ISBN 0521496195.
2. The European Civil Aviation Conference. Regulation (EC) N°2820/2002 of the
European Parliament and of the Council of 16 December 2002 establishing Common
Rules in the Field of Civil Aviation Security, December 2002.
3. C. Dubois, T. Hardin, and V. Viguié Donzeau-Gouge. Building Certified Compo-
nents within Focal. In Symposium on Trends in Functional Programming (TFP),
volume 5, pages 33-48, Munich (Germany), November 2004. Intellect (Bristol, UK).
4. M. Jaume and C. Morisset. Formalisation and Implementation of Access Control
Models. In Information Assurance and Security (IAS), International Conference
on Information Technology (ITCC), pages 703-708, Las Vegas (USA), April 2005.
IEEE CS Press.
5. R. Laleau, S. Vignes, Y. Ledru, M. Lemoine, D. Bert, V. Viguié Donzeau-Gouge,
and F. Peureux. Application of Requirements Engineering Techniques to the Anal-
ysis of Civil Aviation Security Standards. In International Workshop on Situational
Requirements Engineering Processes (SREP), in conjunction with the 18" IEEE
International Requirements Engineering Conference, Paris (France), August 2005.
6. L. Lamport. How to Write a Proof. American Mathematical Monthly, 102(7):600—
608, August 1995.
7. The International Civil Aviation Organization. Annex 17 to the Convention on
International Civil Aviation, Security - Safequarding International Civil Aviation
against Acts of Unlawful Interference, Amendement 11, November 2005.
The EDEMOI project, 2003. http://www-1sr.imag.fr/EDEMOI/.
The SAFEE project, 2004. http://www.safee.reading.ac.uk/.
10. The Coq Development Team. Coq, version 8.0. INRIA, January 2006.
Available at: http://coq.inria.fr/.

11. The Cristal Team. Objective Caml, version 8.09.1. INRIA, January 2006.
Available at: http://caml.inria.fr/.

12. The Focal Development Team. Focal, version 0.3.1. CNAM/INRIA/LIP6, May 2005.
Available at: http://focal.inria.fr/.

© ®

